# TODO import
import re
import os
import sys
import hmz
import scipy
import pathlib
import mitosheet
import numpy as np
import pandas as pd
import time
import copy
import random
import sympy
from sympy import limit
from sympy import diff
from sympy import integrals
import sklearn
import graphviz
from sklearn import tree
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error as MSE
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.metrics import classification_report, roc_auc_score
import sko
import plotly
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
plotly.offline.init_notebook_mode()
import chart_studio
import chart_studio.plotly as py
from chart_studio.plotly import plot, iplot
chart_studio.tools.set_credentials_file(username='zhiliao0824', api_key='qrGJtJRojwpsVJ3nosn0')
import cufflinks as cf
cf.set_config_file(
offline=True,
world_readable=True,
theme='pearl', # cf.getThemes()
)
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # KaiTi
plt.rcParams['axes.unicode_minus'] = False
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
# InteractiveShell.ast_node_interactivity = 'last'
import cv2 as cv
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as Data
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import pylatex
import latexify
import warnings
warnings.filterwarnings("ignore")